首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8231篇
  免费   1371篇
  国内免费   3262篇
  2023年   332篇
  2022年   315篇
  2021年   446篇
  2020年   612篇
  2019年   729篇
  2018年   578篇
  2017年   534篇
  2016年   567篇
  2015年   489篇
  2014年   589篇
  2013年   740篇
  2012年   500篇
  2011年   521篇
  2010年   445篇
  2009年   486篇
  2008年   493篇
  2007年   542篇
  2006年   439篇
  2005年   414篇
  2004年   350篇
  2003年   334篇
  2002年   293篇
  2001年   266篇
  2000年   209篇
  1999年   181篇
  1998年   150篇
  1997年   132篇
  1996年   126篇
  1995年   157篇
  1994年   121篇
  1993年   89篇
  1992年   99篇
  1991年   90篇
  1990年   50篇
  1989年   61篇
  1988年   40篇
  1987年   33篇
  1986年   35篇
  1985年   30篇
  1984年   32篇
  1983年   37篇
  1982年   50篇
  1981年   24篇
  1980年   26篇
  1979年   14篇
  1978年   8篇
  1977年   11篇
  1976年   9篇
  1975年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
张雨珊  周洪  刘秀华  向道艳 《生态学报》2023,43(13):5395-5405
喀斯特地区的生态恢复对于促进国土空间的生态修复、实现区域生态安全具有重要意义。基于酉阳县和沿河县的383份农户调查数据,从微观的农户尺度运用Tobit模型分析喀斯特地区农村劳动力转移对生态恢复的影响,并关注其对酉阳县和沿河县生态恢复的影响差异。研究结果表明:①研究区劳动力转移现象明显,47.67%的农村劳动力发生了转移;②研究区生态恢复情况总体较好,酉阳县的生态恢复好于沿河县;③农村劳动力转移通过农业劳动力的流失效应和非农收入的替代效应促进了喀斯特地区的生态恢复;④劳动力转移的程度不同,对生态恢复的作用强度也不同。沿河相对滞后的劳动力转移程度,使得其生态恢复稍弱于酉阳。为促进喀斯特地区生态恢复,政府应有序引导农村劳动力向非农就业转移,提高转移农户的非农化程度。  相似文献   
52.
53.
长江安庆新洲水域鱼类群落结构及多样性   总被引:6,自引:0,他引:6  
沙洲水域环境良好,饵料资源丰富,栖息生境多样,为鱼类的生长繁殖提供了优良的生存环境。为了解长江安庆新洲水域鱼类群落结构特征,于2017年4月、7月、10月和12月对安庆江段新洲水域鱼类群落进行季节性调查。共采集鱼类64种,分属5目11科48属,其中62.5%为鲤科鱼类。以物种数和多样性指数分析群落多样性特征,结果表明新洲水域鱼类种类多样性水平较高。单因素方差分析表明,该群落多样性季节差异显著(P0.05),空间差异不明显。新洲水域鱼类群落优势种为鳊(Parabramis pekinensis Basilewsky, 1855)、鲤(Cyprinus carpio Linnaeus, 1758)、贝氏■(Hemiculter bleekeri Warpachowsky, 1887)、银鮈(Squalidus argentatus Sauvage et Dabry, 1874)和似鳊(Pseudobrama simoni Bleeker, 1864)。4种摄食功能群中,杂食性(42.19%)和肉食性(35.94%)鱼类物种数比例较高;3种生态类群中,淡水定居性鱼类占绝对优势(84.37%);3种栖息水层类型中,底层鱼类物种数比例较高,占37.50%。大型经济鱼类占总渔获物比例低(0.01%),但个体较大,因而相对重要性指数(IRI)高。总体上,新洲鱼类群落多样性和丰富度指数较高,均匀度指数偏低,个体小型化趋势明显。捕捞强度过大、水利工程建设导致的江湖阻隔及外来物种入侵是新洲水域渔业资源衰退的主要因素。由此,建议持续开展长江渔业资源监测,加强长江干流沙洲水域渔业资源保护。  相似文献   
54.
Natural disasters in populated areas may result in massive casualties and extensive destruction of infrastructure. Humanitarian aid delegations may have to cope with the complicated issue of patient prioritization under conditions of severe resource scarcity. A triage model, consisting of five principles, is proposed for the prioritization of patients, and it is argued that rational and reasonable agents would agree upon them. The Israel Defense Force's humanitarian mission to Haiti following the 2010 earthquake serves as a case study for the various considerations taken into account when designing the ethical‐clinical policy of field hospitals. The discussion focuses on three applications: the decision to include an intensive care unit, the decision to include obstetrics and neonatal units, and the treatment policy for compound fractures.  相似文献   
55.
56.
A set of eight simple ecological and social principles is proposed that could enhance the understanding of what constitutes fish 'habitat' and, if implemented, could contribute to improved management and conservation strategies. The habitat principles are a small, interrelated sub‐set that may be coupled with additional ones to formulate comprehensive guidelines for management and conservation strategies. It is proposed that: 1) habitat can be created by keystone species and interactions among species; 2) the productivity of aquatic and riparian habitat is interlinked by reciprocal exchanges of material; 3) the riparian zone is fish habitat; 4) fishless headwater streams are inseparable from fish‐bearing rivers downstream; 5) habitats can be coupled – in rivers, lakes, estuaries and oceans, and in time; 6) habitats change over hours to centuries; 7) fish production is dynamic due to biocomplexity, in species and in habitats; 8) management and conservation strategies must evolve in response to present conditions, but especially to the anticipated future. It is contended that the long‐term resilience of native fish communities in catchments shared by humans depends on incorporating these principles into management and conservation strategies. Further, traditional strategies poorly reflect the dynamic nature of habitat, the true extent of habitat, or the intrinsic complexity in societal perspectives. Forward‐thinking fish management and conservation plans view habitat as more than water. They are multilayered, ranging from pools to catchments to ecoregions, and from hours to seasons to centuries. They embrace, as a fundamental premise, that habitat evolves through both natural and anthropogenic processes, and that patterns of change may be as important as other habitat attributes.  相似文献   
57.
1. Contemporary species distributions are determined by a mixture of ecological and historical filters acting on several spatial and temporal scales. Mediterranean climate areas are one of the world's biodiversity hotspots with a high level of endemicity, which is linked to complex ecological and historical factors. 2. This paper explores the ecological and historical factors constraining the distribution of caddisfly species on a large regional scale. A total of 69 taxa were collected from 140 sampling sites in 10 Iberian Mediterranean river basins. Approximately 74% of taxa can be considered rare, with the southern basins (the Baetic–Riffian region) having greater endemicity. The greatest richness, involving a mixture of northern and southern species, was found in the transitional area between the Baetic–Riffian region and the Hesperic Massif. 3. The historical processes occurring during the Tertiary (i.e. the junction of the Eurasian and African plates) explained 3.1% of species distribution, whereas ecological factors accounted for 20.7%. Only 0.3% was explained by the interaction of history and ecology. A set of multi‐scale ecological variables (i.e. basin, reach and bedform characteristics) defined five river types with specific caddisfly assemblages. The commonest caddisfly species accounted for the regional distribution pattern, while rare taxa contributed to the explanation of subtle patterns not shown by common species. 4. Despite the importance of historical factors for biogeography and the large scale used in our study, ecological variables better explained caddisfly distribution. This may be explained by the length of time since the historical process we are considering, the high dispersion and colonisation capacity of many caddisfly species, and the strong environmental gradient in the area. Because of the historical and environmental complexity of Mediterranean areas, rare taxa should be included in ecological studies so that the singularity of these ecosystems is not missed.  相似文献   
58.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   
59.
Insects use dormancy to survive adverse conditions. Brown locust Locustana pardalina (Walk.) eggs offer a convenient model to study dormancy (diapause and quiescence), which contributes to their survival under arid conditions. The metabolic rates of developing nondiapause, diapause and quiescent eggs are compared in the present study using closed‐system respirometry. The embryo becomes committed to continue development and hatch or to enter diapause 6 days after the eggs are placed on moist soil. The metabolic rate of nondiapause eggs increases exponentially until hatching, whereas that of diapause eggs is low and stable. The metabolic rate of diapause laboratory eggs (1.9 ± 0.6 µL CO2 mg?1 h?1) is significantly higher than that of field eggs (0.5 ± 0.3 µL CO2 mg?1 h?1), although the ranges of metabolic rate overlap and the embryos are all in late anatrepsis. The metabolic rate of quiescent eggs is similar to that of diapause eggs but decreases with time. Low metabolic rates during arrested development allow eggs to persist over long periods before hatching.  相似文献   
60.
Abstract Field trials by sex pheromone of aphid to trap peach aphids Myzus persicae have been carried out in 1995 and in 1996. Suitable time and the effect of ratio of two components nepetalactone and nepetalactol to apply the lure have been observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号